Exponentielle Glättung Dieses Beispiel lehrt, wie Sie eine exponentielle Glättung auf eine Zeitreihe in Excel anwenden. Exponentielle Glättung wird verwendet, um Unregelmäßigkeiten (Spitzen und Täler) zu glätten, um Trends leicht zu erkennen. 1. Erstens, werfen wir einen Blick auf unsere Zeitreihe. 2. Klicken Sie auf der Registerkarte Daten auf Datenanalyse. Hinweis: Klicken Sie hier, um das Analyse-ToolPak-Add-In zu laden. 3. Wählen Sie Exponentialglättung aus, und klicken Sie auf OK. 4. Klicken Sie im Feld Eingabebereich auf den Bereich B2: M2. 5. Klicken Sie in das Feld Dämpfungsfaktor und geben Sie 0.9 ein. Literatur spricht oft über die Glättungskonstante (alpha). Der Wert (1-) wird als Dämpfungsfaktor bezeichnet. 6. Klicken Sie in das Feld Ausgabebereich und wählen Sie Zelle B3 aus. 8. Zeichnen Sie ein Diagramm dieser Werte. Erläuterung: Da wir Alpha auf 0,1 setzen, erhält der vorhergehende Datenpunkt ein relativ geringes Gewicht, während der vorhergehende geglättete Wert ein großes Gewicht erhält (d. H. 0,9). Als Ergebnis werden Spitzen und Täler geglättet. Die Grafik zeigt eine zunehmende Tendenz. Excel kann den geglätteten Wert für den ersten Datenpunkt nicht berechnen, da es keinen vorherigen Datenpunkt gibt. Der geglättete Wert für den zweiten Datenpunkt entspricht dem vorherigen Datenpunkt. 9. Wiederholen Sie die Schritte 2 bis 8 für Alpha 0,3 und Alpha 0,8. Fazit: Je kleiner alpha (größer der Dämpfungsfaktor), desto mehr werden die Spitzen und Täler geglättet. Je größer alpha (kleiner der Dämpfungsfaktor), desto näher sind die geglätteten Werte zu den tatsächlichen Datenpunkten. Simple Vs. Exponential Moving Averages Moving-Mittelwerte sind mehr als das Studium einer Folge von Zahlen in aufeinanderfolgender Reihenfolge. Frühe Praktiker der Zeitreihenanalyse beschäftigten sich tatsächlich eher mit einzelnen Zeitreihenzahlen als mit der Interpolation dieser Daten. Interpolation. In Form von Wahrscheinlichkeitstheorien und - analyse, kam viel später, als Muster entwickelt wurden und Korrelationen entdeckt. Einmal verstanden, wurden verschiedene geformte Kurven und Linien entlang der Zeitreihen gezogen, um zu prognostizieren, wo die Datenpunkte gehen könnten. Diese werden nun als grundlegende Methoden, die derzeit von technischen Analyse-Händler verwendet. Charting-Analyse kann bis ins 18. Jahrhundert Japan zurückverfolgt werden, aber wie und wann bewegte Durchschnitte wurden zuerst auf Marktpreise angewendet bleibt ein Geheimnis. Es wird allgemein verstanden, dass einfache Bewegungsdurchschnitte (SMA) lange vor exponentiellen Bewegungsdurchschnitten (EMA) verwendet wurden, da EMAs auf SMA-Gerüsten aufgebaut sind und das SMA-Kontinuum für Plotter und Verfolgungszwecke leichter verstanden wurde. (Möchten Sie ein wenig Hintergrund lesen Check out Moving Averages: Was sind sie) Simple Moving Average (SMA) Einfache gleitende Durchschnitte wurden die bevorzugte Methode für die Verfolgung Marktpreise, weil sie schnell zu berechnen und leicht zu verstehen sind. Frühe Marktpraktiker arbeiteten ohne den Gebrauch der ausgefeilten Diagrammmetriken, die heute benutzt werden, also verließen sie hauptsächlich auf Marktpreisen als ihre alleinigen Führer. Sie berechneten die Marktpreise von Hand, und graphed diese Preise, um Trends und Marktrichtung zu bezeichnen. Dieser Prozeß war sehr langwierig, erweist sich aber mit der Bestätigung weiterer Untersuchungen als recht rentabel. Um einen 10-tägigen einfachen gleitenden Durchschnitt zu berechnen, addieren Sie einfach die Schlusskurse der letzten 10 Tage und dividieren durch 10. Der gleitende 20-Tage-Durchschnitt wird berechnet, indem die Schlusskurse über einen Zeitraum von 20 Tagen addiert und durch 20 dividiert werden bald. Diese Formel ist nicht nur auf Schlusskurse basiert, sondern das Produkt ist ein Mittel der Preise - eine Teilmenge. Bewegungsdurchschnitte werden als bewegt bezeichnet, weil sich die in der Berechnung verwendete Gruppe von Preisen gemäß dem Punkt auf dem Diagramm bewegt. Das bedeutet, dass alte Zeiten zugunsten neuer Schlusskurstage fallengelassen werden, so dass immer eine neue Berechnung erforderlich ist, die dem Zeitrahmen des durchschnittlichen Beschäftigten entspricht. So wird ein 10-Tage-Durchschnitt neu berechnet, indem der neue Tag hinzugefügt und der 10. Tag fallen gelassen wird, und der neunte Tag wird am zweiten Tag fallen gelassen. Exponential Moving Average (EMA) Exponential Moving Average (EMA) Der exponentielle gleitende Durchschnitt wurde verfeinert und seit den sechziger Jahren aufgrund früherer Experimente mit dem Computer weiter verbreitet. Die neue EMA würde sich mehr auf die jüngsten Preise konzentrieren als auf eine lange Reihe von Datenpunkten, da der einfache gleitende Durchschnitt erforderlich ist. Aktuelle EMA ((Preis (aktuelle) - vorherige EMA)) X Multiplikator) vorherige EMA. Der wichtigste Faktor ist die Glättungskonstante, die 2 (1N) mit N die Anzahl der Tage. Eine 10-Tage-EMA 2 (101) 18,8 Dies bedeutet, dass ein 10-Perioden-EMA den jüngsten Preis 18,8, ein 20-Tage EMA 9,52 und 50-Tage EMA 3,92 Gewicht auf den letzten Tag gewichtet. Die EMA arbeitet, indem sie die Differenz zwischen dem Preis der gegenwärtigen Perioden und der vorherigen EMA gewichtet und das Ergebnis der vorherigen EMA hinzugefügt hat. Je kürzer die Periode, desto mehr Gewicht auf den jüngsten Preis angewendet. Anpassungslinien Nach diesen Berechnungen sind Punkte aufgetragen und zeigen eine passende Linie. Anpassungen über oder unter dem Marktpreis bedeuten, dass alle gleitenden Durchschnitte nacheilende Indikatoren sind. Und werden hauptsächlich für folgende Trends verwendet. Sie funktionieren nicht gut mit Reichweitenmärkten und Perioden der Überlastung, weil die passenden Linien nicht einen Trend aufgrund eines Mangels an offensichtlich höheren Höhen oder niedrigeren Tiefs bezeichnen. Plus, passende Linien neigen dazu, konstant bleiben, ohne Andeutung der Richtung. Eine aufsteigende Montagelinie unterhalb des Marktes bedeutet eine lange, während eine sinkende Montagelinie oberhalb des Marktes ein kurzes bedeutet. (Für eine vollständige Anleitung, lesen Sie unsere Moving Average Tutorial.) Der Zweck der Verwendung eines einfachen gleitenden Durchschnitt ist es, zu erkennen und zu messen Trends durch Glättung der Daten mit Hilfe von mehreren Gruppen von Preisen. Ein Trend wird entdeckt und in eine Prognose hochgerechnet. Es wird davon ausgegangen, dass sich die bisherigen Trendbewegungen fortsetzen werden. Für den einfachen gleitenden Durchschnitt kann ein langfristiger Trend gefunden und gefolgt werden viel einfacher als eine EMA, mit der vernünftigen Annahme, dass die Anpassungslinie stärker als eine EMA-Linie aufgrund der längeren Fokussierung auf Mittelpreise halten wird. Eine EMA wird verwendet, um kürzere Trendbewegungen zu erfassen, aufgrund der Fokussierung auf die jüngsten Preise. Durch dieses Verfahren soll eine EMA jede Verzögerung in dem einfachen gleitenden Durchschnitt reduzieren, so dass die Anpassungslinie die Preise näher umschließt als ein einfacher gleitender Durchschnitt. Das Problem mit der EMA ist dies: Seine anfällig für Preisunterbrechungen, vor allem auf schnellen Märkten und Zeiten der Volatilität. Die EMA funktioniert gut, bis die Preise die passende Linie brechen. Bei höheren Volatilitätsmärkten könnte man erwägen, die Länge des gleitenden Durchschnittsbegriffs zu vergrößern. Man kann sogar von einer EMA zu einer SMA wechseln, da die SMA die Daten viel besser macht als eine EMA aufgrund ihres Fokus auf längerfristige Mittel. Trendindikatoren Als Nachlaufindikatoren dienen die gleitenden Mittelwerte als Unterstützungs - und Widerstandslinien. Wenn die Preise unter einer 10-tägigen Anpaßlinie in einem Aufwärtstrend brechen, sind die Chancen gut, dass der Aufwärtstrend schwächer werden kann, oder zumindest kann sich der Markt konsolidieren. Wenn die Preise über einen 10 Tage gleitenden Durchschnitt in einem Abwärtstrend brechen. Kann der Trend abnehmen oder konsolidieren. Verwenden Sie in diesen Fällen einen 10- und 20-Tage gleitenden Durchschnitt zusammen, und warten Sie, bis die 10-Tage-Linie über oder unter der 20-Tage-Linie zu überqueren. Dies bestimmt die nächste kurzfristige Richtung für die Preise. Für längere Zeiträume, beobachten Sie die 100- und 200-Tage gleitende Mittelwerte für längerfristige Richtung. Wenn man beispielsweise den 100- und 200-Tage-Gleitdurchschnitt verwendet, wenn der 100-Tage-Gleitende Durchschnitt unter dem 200-Tage-Durchschnitt überschreitet, nennt man ihn das Todeskreuz. Und ist sehr bärisch für die Preise. Ein 100-Tage-Gleitender Durchschnitt, der über einen 200-Tage gleitenden Durchschnitt kreuzt, wird das goldene Kreuz genannt. Und ist sehr bullisch für die Preise. Es spielt keine Rolle, wenn ein SMA oder eine EMA verwendet wird, weil beide Trend-folgende Indikatoren sind. Seine nur in der kurzfristigen, dass die SMA hat geringfügige Abweichungen von seinem Pendant, die EMA. Fazit Die gleitenden Durchschnitte sind die Grundlage der Diagramm - und Zeitreihenanalyse. Einfache gleitende Durchschnitte und die komplexeren exponentiellen gleitenden Durchschnitte helfen, den Trend zu visualisieren, indem sie Preisbewegungen ausgleichen. Technische Analyse wird manchmal als Kunst und nicht als Wissenschaft bezeichnet, die beide Jahre in Anspruch nehmen. (Erfahren Sie mehr in unserem Technical Analysis Tutorial.) Wie zu berechnen Weighted Moving Averages in Excel mit exponentiellen Glättung Excel-Datenanalyse für Dummies, 2. Edition Das exponentielle Glättungswerkzeug in Excel berechnet den gleitenden Durchschnitt. Die exponentielle Glättung gewichtet jedoch die Werte, die in den gleitenden Durchschnittsberechnungen enthalten sind, so daß neuere Werte einen grßeren Einfluß auf die Durchschnittsberechnung haben und alte Werte einen geringeren Effekt haben. Diese Gewichtung wird durch eine Glättungskonstante erreicht. Um zu veranschaulichen, wie das Exponential-Glättungswerkzeug arbeitet, nehmen Sie an, dass Sie wieder die durchschnittliche tägliche Temperaturinformation betrachten. Gehen Sie folgendermaßen vor, um gewichtete gleitende Mittelwerte mit exponentieller Glättung zu berechnen: Um einen exponentiell geglätteten gleitenden Durchschnitt zu berechnen, klicken Sie zuerst auf die Schaltfläche Data tab8217s Data Analysis. Wenn Excel das Dialogfeld Datenanalyse anzeigt, wählen Sie aus der Liste den Punkt Exponentielle Glättung aus, und klicken Sie dann auf OK. Excel zeigt das Dialogfeld Exponentielle Glättung an. Identifizieren Sie die Daten. Um die Daten zu identifizieren, für die Sie einen exponentiell geglätteten gleitenden Durchschnitt berechnen möchten, klicken Sie in das Textfeld Eingabebereich. Identifizieren Sie dann den Eingabebereich, indem Sie entweder eine Arbeitsbereichsadresse eingeben oder den Arbeitsblattbereich auswählen. Wenn Ihr Eingabebereich eine Textbeschriftung enthält, um Ihre Daten zu identifizieren oder zu beschreiben, aktivieren Sie das Kontrollkästchen Beschriftungen. Geben Sie die Glättung konstant. Geben Sie den Glättungskonstantenwert in das Textfeld Dämpfungsfaktor ein. Die Excel-Hilfedatei legt nahe, dass Sie eine Glättungskonstante zwischen 0,2 und 0,3 verwenden. Vermutlich jedoch, wenn Sie dieses Werkzeug verwenden, haben Sie Ihre eigenen Ideen, was die richtige Glättungskonstante ist. (Wenn you8217re ahnungslos über die Glättungskonstante, vielleicht sollten Sie shouldn8217t mit diesem Tool.) Sagen Sie Excel, wo die exponentiell geglättete gleitende durchschnittliche Daten platzieren. Verwenden Sie das Textfeld Ausgabebereich, um den Arbeitsblattbereich zu identifizieren, in dem Sie die gleitenden Durchschnittsdaten platzieren möchten. Beispielsweise legen Sie die gleitenden Durchschnittsdaten in das Arbeitsblatt-Feld B2: B10. (Optional) Diagramm die exponentiell geglätteten Daten. Um die exponentiell geglätteten Daten darzustellen, aktivieren Sie das Kontrollkästchen "Diagrammausgabe". (Optional) Geben Sie an, dass Standardfehlerinformationen berechnet werden sollen. Um Standardfehler zu berechnen, aktivieren Sie das Kontrollkästchen Standardfehler. Excel legt Standardfehlerwerte neben den exponentiell geglätteten gleitenden Mittelwerten fest. Klicken Sie auf OK, nachdem Sie festgelegt haben, welche gleitenden durchschnittlichen Informationen Sie berechnen möchten und wo Sie sie platzieren möchten. Excel berechnet gleitende Durchschnittsinformationen.
No comments:
Post a Comment